Matchings in Benjamini–schramm Convergent Graph Sequences
نویسنده
چکیده
We introduce the matching measure of a finite graph as the uniform distribution on the roots of the matching polynomial of the graph. We analyze the asymptotic behavior of the matching measure for graph sequences with bounded degree. A graph parameter is said to be estimable if it converges along every Benjamini– Schramm convergent sparse graph sequence. We prove that the normalized logarithm of the number of matchings is estimable. We also show that the analogous statement for perfect matchings already fails for d–regular bipartite graphs for any fixed d ≥ 3. The latter result relies on analyzing the probability that a randomly chosen perfect matching contains a particular edge. However, for any sequence of d–regular bipartite graphs converging to the d– regular tree, we prove that the normalized logarithm of the number of perfect matchings converges. This applies to random d–regular bipartite graphs. We show that the limit equals to the exponent in Schrijver’s lower bound on the number of perfect matchings. Our analytic approach also yields a short proof for the Nguyen–Onak (also Elek– Lippner) theorem saying that the matching ratio is estimable. In fact, we prove the slightly stronger result that the independence ratio is estimable for claw-free graphs.
منابع مشابه
Limits of local-global convergent graph sequences
The colored neighborhood metric for sparse graphs was introduced by Bollobás and Riordan [8]. The corresponding convergence notion refines a convergence notion introduced by Benjamini and Schramm [6]. We prove that even in this refined sense, the limit of a convergent graph sequence (with uniformly bounded degree) can be represented by a graphing. We study various topics related to this converg...
متن کاملBenjamini-Schramm continuity of root moments of graph polynomials
Abstract. Recently, M. Abért and T. Hubai studied the following problem. The chromatic measure of a finite simple graph is defined to be the uniform distribution on its chromatic roots. Abért and Hubai proved that for a Benjamini-Schramm convergent sequence of finite graphs, the chromatic measures converge in holomorphic moments. They also showed that the normalized log of the chromatic polynom...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملOn limits of graphs sphere packed in Euclidean space and applications
The core of this note is the observation that links between circle packings of graphs and potential theory developed in Benjamini and Schramm (2001) [4] and He and Schramm (1995) [11] can be extended to higher dimensions. In particular, it is shown that every limit of finite graphs sphere packed in Rd with a uniformly chosen root is d-parabolic. We then derive a few geometric corollaries. For e...
متن کاملChromatic roots and limits of dense graphs
In this short note we observe that recent results of Abért and Hubai and of Csikvári and Frenkel about Benjamini–Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We offer a number of problems and conjectures motivated by this observation.
متن کامل